Unmatched Technical Expertise
Our LEED Consulting is unmatched in the industry. We know what LEED rating and certification requires and we will therefore accomplish that for you.
Quick Turnaround
Our LEED Consulting Certification through USGBC is the quickest. We snure that everything is 100% before submissions.
Sub-Slab Depressurization System
Every construction project has its own idiosyncrasies and problems that come up. Sometimes these problems don’t come up until after the project has long been completed. As the earth settles over time the geotechnical surveys that were completed can become obsolete and won’t always take into account the gases and vapors that are trapped under water-tables and compressed sediment or soil. This eventuality has begun to be more commonplace as structures that were built decades ago are experiencing settling and where new construction was hastily erected.
To combat the rising number of instances and structures where vapor and gas intrusion are happening, new technologies are being developed and implemented to keep the spaces safe. The construction and MEP engineering communities are always working to come up with new and creative ways to mitigate the problems facing building owners and occupants today.
As regulations increase across the country regarding evaluating vapor intrusion pathways, so too is the need for proper mitigation systems. The first step towards properly mitigating vapor intrusion in a commercial building structure involves sub-slab soil gas sampling to identify the levels assess the potential risk.
If vapor intrusion is identified, and found to be above the accepted screening levels, a mitigation system should then be designed and put in place. For existing commercial buildings where vapor intrusion is identified, currently the most common mitigation system is the sub-slab depressurization system. These systems are used to mitigate indoor vapors arising from subsurface contamination.
What Is A Sub-Slab Depressurization System And What Does It Do?
The EPA defines sub-slab depressurization technology as “a system designed to achieve lower sub-slab air pressure relative to indoor air pressure by use of a fan-powered vent drawing air from beneath the slab.” Thus, even if there are holes, cracks, or other pathways between the commercial building and the subsurface, the vapors will flow downward, not upward. Therefore, a well-designed sub-slab depressurization system will most likely prevent any toxic vapors from intruding above into the building structure.
These systems usually are designed to capture and take away migrating vapors before they enter indoor air. The vapor originates in contaminated soil or contaminated groundwater found in the water table. The vapor then migrates up through the soil to escape through the cracks, holes, and gaps in our building structures. sub-slab depressurization system allows the intruding vapor to escape through another means and be neutralized before being released into the air.
Most of the sub-slab depressurization systems are designed to remedy issues with existing industrial and residential structures. Recently, there have been additional styles being designed for systems being put in with new structures, that is often a lot of easier than retrofitting an associate existing structure. The number of controls and sensors related to the system is often a mirrored image of the danger related to the migrating vapors for that specific structure. Some larger systems incorporate remote measuring to observe the operation of the vapor mitigation system and to form certain any malfunctions are repaired quickly.
Sub-Services We Provide
- Heat Recovery System Design
- Custom Air Handling Unit Design
- Ventilation System Design
- Outside Air System Design
- Sub Slab Depressurization System
- Laboratory Exhaust System
- Commercial Kitchen Hood Exhaust
- Indoor Air Quality Filtration Systems
- Water Cooled System Design
- Air Cooled AC System Design
- Legalization
- VRF System Design